Finally have a name for my little matrix shape iterator library. I present to you, the SHITErators. Are they THE shit? Shit? Or just Shite?
This commit is contained in:
parent
ffdea41faa
commit
73b85e8057
4 changed files with 557 additions and 463 deletions
66
matrix.cpp
66
matrix.cpp
|
@ -9,72 +9,6 @@ using namespace fmt;
|
|||
using std::min, std::max;
|
||||
|
||||
namespace matrix {
|
||||
|
||||
flood::flood(Matrix &mat, Point start, int old_val, int new_val) :
|
||||
mat(mat), start(start), old_val(old_val), new_val(new_val),
|
||||
x(start.x), y(start.y), dirs{mat, start.x, start.y}
|
||||
{
|
||||
dbc::check(old_val != new_val, "what you doing?");
|
||||
current_loc = start;
|
||||
q.push(start);
|
||||
}
|
||||
|
||||
bool flood::next() {
|
||||
if(!q.empty()) {
|
||||
if(!dirs.next()) {
|
||||
// box is done reset it
|
||||
auto current_loc = q.front();
|
||||
q.pop();
|
||||
|
||||
dirs = matrix::compass{mat, current_loc.x, current_loc.y};
|
||||
dirs.next();
|
||||
}
|
||||
|
||||
// get the next thing
|
||||
if(mat[dirs.y][dirs.x] <= old_val) {
|
||||
mat[dirs.y][dirs.x] = new_val;
|
||||
x = dirs.x;
|
||||
y = dirs.y;
|
||||
|
||||
q.push({.x=dirs.x, .y=dirs.y});
|
||||
}
|
||||
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
line::line(Point start, Point end) :
|
||||
x(start.x), y(start.y),
|
||||
x1(end.x), y1(end.y)
|
||||
{
|
||||
dx = std::abs(x1 - x);
|
||||
sx = x < x1 ? 1 : -1;
|
||||
dy = std::abs(y1 - y) * -1;
|
||||
sy = y < y1 ? 1 : -1;
|
||||
error = dx + dy;
|
||||
}
|
||||
|
||||
bool line::next() {
|
||||
if(x != x1 || y != y1) {
|
||||
int e2 = 2 * error;
|
||||
|
||||
if(e2 >= dy) {
|
||||
error = error + dy;
|
||||
x = x + sx;
|
||||
}
|
||||
|
||||
if(e2 <= dx) {
|
||||
error = error + dx;
|
||||
y = y + sy;
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void dump(const std::string &msg, Matrix &map, int show_x, int show_y) {
|
||||
println("----------------- {}", msg);
|
||||
|
||||
|
|
396
matrix.hpp
396
matrix.hpp
|
@ -9,385 +9,43 @@
|
|||
#include "point.hpp"
|
||||
#include "rand.hpp"
|
||||
#include "dbc.hpp"
|
||||
#include "shiterator.hpp"
|
||||
|
||||
namespace matrix {
|
||||
using std::vector, std::queue, std::array;
|
||||
using std::min, std::max, std::floor;
|
||||
using Row = shiterator::BaseRow<int>;
|
||||
using Matrix = shiterator::Base<int>;
|
||||
|
||||
template<typename T>
|
||||
using BaseRow = vector<T>;
|
||||
using viewport = shiterator::viewport_t<Matrix>;
|
||||
|
||||
template<typename T>
|
||||
using Base = vector<BaseRow<T>>;
|
||||
using each_cell = shiterator::each_cell_t<Matrix>;
|
||||
|
||||
using Row = vector<int>;
|
||||
using Matrix = vector<Row>;
|
||||
|
||||
|
||||
/*
|
||||
* Just a quick thing to reset a matrix to a value.
|
||||
*/
|
||||
template<typename MAT, typename VAL>
|
||||
inline void assign(MAT &out, VAL new_value) {
|
||||
for(auto &row : out) {
|
||||
row.assign(row.size(), new_value);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MAT>
|
||||
inline bool inbounds(MAT &mat, size_t x, size_t y) {
|
||||
// since Point.x and Point.y are size_t any negatives are massive
|
||||
bool res = (y < mat.size()) && (x < mat[0].size());
|
||||
return res;
|
||||
}
|
||||
|
||||
template<typename MAT>
|
||||
inline size_t width(MAT &mat) {
|
||||
return mat[0].size();
|
||||
}
|
||||
|
||||
template<typename MAT>
|
||||
inline size_t height(MAT &mat) {
|
||||
return mat.size();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline Base<T> make_base(size_t width, size_t height) {
|
||||
Base<T> result(height, BaseRow<T>(width));
|
||||
return result;
|
||||
}
|
||||
|
||||
inline Matrix make(size_t width, size_t height) {
|
||||
Matrix result(height, Row(width));
|
||||
return result;
|
||||
}
|
||||
|
||||
inline size_t next_x(size_t x, size_t width) {
|
||||
return (x + 1) * ((x + 1) < width);
|
||||
}
|
||||
|
||||
inline size_t next_y(size_t x, size_t y) {
|
||||
return y + (x == 0);
|
||||
}
|
||||
|
||||
inline bool at_end(size_t y, size_t height) {
|
||||
return y < height;
|
||||
}
|
||||
|
||||
inline bool end_row(size_t x, size_t width) {
|
||||
return x == width - 1;
|
||||
}
|
||||
using each_row = shiterator::each_row_t<Matrix>;
|
||||
using box = shiterator::box_t<Matrix>;
|
||||
using compass = shiterator::compass_t<Matrix>;
|
||||
using circle = shiterator::circle_t<Matrix>;
|
||||
using rectangle = shiterator::rectangle_t<Matrix>;
|
||||
using rando_rect = shiterator::rando_rect_t<Matrix>;
|
||||
using line = shiterator::line;
|
||||
|
||||
void dump(const std::string &msg, Matrix &map, int show_x=-1, int show_y=-1);
|
||||
|
||||
template<typename MAT>
|
||||
struct each_cell_t {
|
||||
size_t x = ~0;
|
||||
size_t y = ~0;
|
||||
size_t width = 0;
|
||||
size_t height = 0;
|
||||
inline Matrix make(size_t width, size_t height) {
|
||||
return shiterator::make<int>(width, height);
|
||||
}
|
||||
|
||||
each_cell_t(MAT &mat)
|
||||
{
|
||||
height = matrix::height(mat);
|
||||
width = matrix::width(mat);
|
||||
}
|
||||
inline bool inbounds(Matrix &mat, size_t x, size_t y) {
|
||||
return shiterator::inbounds(mat, x, y);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
x = next_x(x, width);
|
||||
y = next_y(x, y);
|
||||
return at_end(y, height);
|
||||
}
|
||||
};
|
||||
inline size_t width(Matrix &mat) {
|
||||
return shiterator::width(mat);
|
||||
}
|
||||
|
||||
template<typename MAT>
|
||||
struct viewport_t {
|
||||
Point start;
|
||||
// this is the point in the map
|
||||
size_t x;
|
||||
size_t y;
|
||||
// this is the point inside the box, start at 0
|
||||
size_t view_x = ~0;
|
||||
size_t view_y = ~0;
|
||||
// viewport width/height
|
||||
size_t width;
|
||||
size_t height;
|
||||
inline size_t height(Matrix &mat) {
|
||||
return shiterator::height(mat);
|
||||
}
|
||||
|
||||
viewport_t(MAT &mat, Point start, int max_x, int max_y) :
|
||||
start(start),
|
||||
x(start.x-1),
|
||||
y(start.y-1)
|
||||
{
|
||||
width = std::min(size_t(max_x), matrix::width(mat) - start.x);
|
||||
height = std::min(size_t(max_y), matrix::height(mat) - start.y);
|
||||
fmt::println("viewport_t max_x, max_y {},{} vs matrix {},{}, x={}, y={}",
|
||||
max_x, max_y, matrix::width(mat), matrix::height(mat), x, y);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
y = next_y(x, y);
|
||||
x = next_x(x, width);
|
||||
view_x = next_x(view_x, width);
|
||||
view_y = next_y(view_x, view_y);
|
||||
return at_end(y, height);
|
||||
}
|
||||
};
|
||||
|
||||
using viewport = viewport_t<Matrix>;
|
||||
|
||||
using each_cell = each_cell_t<Matrix>;
|
||||
|
||||
template<typename MAT>
|
||||
struct each_row_t {
|
||||
size_t x = ~0;
|
||||
size_t y = ~0;
|
||||
size_t width = 0;
|
||||
size_t height = 0;
|
||||
bool row = false;
|
||||
|
||||
each_row_t(MAT &mat) {
|
||||
height = matrix::height(mat);
|
||||
width = matrix::width(mat);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
x = next_x(x, width);
|
||||
y = next_y(x, y);
|
||||
row = end_row(x, width);
|
||||
return at_end(y, height);
|
||||
}
|
||||
};
|
||||
|
||||
using each_row = each_row_t<Matrix>;
|
||||
|
||||
template<typename MAT>
|
||||
struct box_t {
|
||||
size_t from_x;
|
||||
size_t from_y;
|
||||
size_t x = 0; // these are set in constructor
|
||||
size_t y = 0; // again, no fancy ~ trick needed
|
||||
size_t left = 0;
|
||||
size_t top = 0;
|
||||
size_t right = 0;
|
||||
size_t bottom = 0;
|
||||
|
||||
box_t(MAT &mat, size_t at_x, size_t at_y, size_t size) :
|
||||
box_t(mat, at_x, at_y, size, size) {
|
||||
}
|
||||
|
||||
box_t(MAT &mat, size_t at_x, size_t at_y, size_t width, size_t height) :
|
||||
from_x(at_x), from_y(at_y)
|
||||
{
|
||||
size_t h = matrix::height(mat);
|
||||
size_t w = matrix::width(mat);
|
||||
|
||||
// keeps it from going below zero
|
||||
// need extra -1 to compensate for the first next()
|
||||
left = max(from_x, width) - width;
|
||||
x = left - 1; // must be -1 for next()
|
||||
// keeps it from going above width
|
||||
right = min(from_x + width + 1, w);
|
||||
|
||||
// same for these two
|
||||
top = max(from_y, height) - height;
|
||||
y = top - (left == 0);
|
||||
bottom = min(from_y + height + 1, h);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
// calc next but allow to go to 0 for next
|
||||
x = next_x(x, right);
|
||||
// x will go to 0, which signals new line
|
||||
y = next_y(x, y); // this must go here
|
||||
// if x==0 then this moves it to min_x
|
||||
x = max(x, left);
|
||||
// and done
|
||||
|
||||
return at_end(y, bottom);
|
||||
}
|
||||
|
||||
float distance() {
|
||||
int dx = from_x - x;
|
||||
int dy = from_y - y;
|
||||
|
||||
return sqrt((dx * dx) + (dy * dy));
|
||||
}
|
||||
};
|
||||
|
||||
using box = box_t<Matrix>;
|
||||
|
||||
template<typename MAT>
|
||||
struct compass_t {
|
||||
size_t x = 0; // these are set in constructor
|
||||
size_t y = 0; // again, no fancy ~ trick needed
|
||||
array<int, 4> x_dirs{0, 1, 0, -1};
|
||||
array<int, 4> y_dirs{-1, 0, 1, 0};
|
||||
size_t max_dirs=0;
|
||||
size_t dir = ~0;
|
||||
|
||||
compass_t(MAT &mat, size_t x, size_t y) :
|
||||
x(x), y(y)
|
||||
{
|
||||
array<int, 4> x_in{0, 1, 0, -1};
|
||||
array<int, 4> y_in{-1, 0, 1, 0};
|
||||
|
||||
for(size_t i = 0; i < 4; i++) {
|
||||
int nx = x + x_in[i];
|
||||
int ny = y + y_in[i];
|
||||
if(matrix::inbounds(mat, nx, ny)) {
|
||||
x_dirs[max_dirs] = nx;
|
||||
y_dirs[max_dirs] = ny;
|
||||
max_dirs++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool next() {
|
||||
dir++;
|
||||
if(dir < max_dirs) {
|
||||
x = x_dirs[dir];
|
||||
y = y_dirs[dir];
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
using compass = compass_t<Matrix>;
|
||||
|
||||
struct flood {
|
||||
Matrix &mat;
|
||||
Point start;
|
||||
int old_val;
|
||||
int new_val;
|
||||
queue<Point> q;
|
||||
Point current_loc;
|
||||
int x;
|
||||
int y;
|
||||
matrix::compass dirs;
|
||||
|
||||
flood(Matrix &mat, Point start, int old_val, int new_val);
|
||||
bool next();
|
||||
bool next_working();
|
||||
};
|
||||
|
||||
struct line {
|
||||
int x;
|
||||
int y;
|
||||
int x1;
|
||||
int y1;
|
||||
int sx;
|
||||
int sy;
|
||||
int dx;
|
||||
int dy;
|
||||
int error;
|
||||
|
||||
line(Point start, Point end);
|
||||
bool next();
|
||||
};
|
||||
|
||||
template<typename MAT>
|
||||
struct circle_t {
|
||||
float center_x;
|
||||
float center_y;
|
||||
float radius = 0.0f;
|
||||
int y = 0;
|
||||
int dx = 0;
|
||||
int dy = 0;
|
||||
int left = 0;
|
||||
int right = 0;
|
||||
int top = 0;
|
||||
int bottom = 0;
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
|
||||
circle_t(MAT &mat, Point center, float radius) :
|
||||
center_x(center.x), center_y(center.y), radius(radius)
|
||||
{
|
||||
width = matrix::width(mat);
|
||||
height = matrix::height(mat);
|
||||
top = max(int(floor(center_y - radius)), 0);
|
||||
bottom = min(int(floor(center_y + radius)), height - 1);
|
||||
|
||||
y = top;
|
||||
}
|
||||
|
||||
bool next() {
|
||||
y++;
|
||||
if(y <= bottom) {
|
||||
dy = y - center_y;
|
||||
dx = floor(sqrt(radius * radius - dy * dy));
|
||||
left = max(0, int(center_x) - dx);
|
||||
right = min(width, int(center_x) + dx + 1);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
using circle = circle_t<Matrix>;
|
||||
|
||||
template<typename MAT>
|
||||
struct rectangle_t {
|
||||
int x;
|
||||
int y;
|
||||
int top;
|
||||
int left;
|
||||
int width;
|
||||
int height;
|
||||
int right;
|
||||
int bottom;
|
||||
|
||||
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
|
||||
top(start_y),
|
||||
left(start_x),
|
||||
width(width),
|
||||
height(height)
|
||||
{
|
||||
size_t h = matrix::height(mat);
|
||||
size_t w = matrix::width(mat);
|
||||
y = start_y - 1;
|
||||
x = left - 1; // must be -1 for next()
|
||||
right = min(start_x + width, w);
|
||||
|
||||
y = start_y;
|
||||
bottom = min(start_y + height, h);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
x = next_x(x, right);
|
||||
y = next_y(x, y);
|
||||
x = max(x, left);
|
||||
return at_end(y, bottom);
|
||||
}
|
||||
};
|
||||
|
||||
using rectangle = rectangle_t<Matrix>;
|
||||
|
||||
template<typename MAT>
|
||||
struct rando_rect_t {
|
||||
int x;
|
||||
int y;
|
||||
int x_offset;
|
||||
int y_offset;
|
||||
rectangle_t<MAT> it;
|
||||
|
||||
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
|
||||
it{mat, start_x, start_y, width, height}
|
||||
{
|
||||
x_offset = Random::uniform(0, int(width));
|
||||
y_offset = Random::uniform(0, int(height));
|
||||
}
|
||||
|
||||
bool next() {
|
||||
bool done = it.next();
|
||||
x = it.left + ((it.x + x_offset) % it.width);
|
||||
y = it.top + ((it.y + y_offset) % it.height);
|
||||
return done;
|
||||
}
|
||||
};
|
||||
|
||||
using rando_rect = rando_rect_t<Matrix>;
|
||||
inline void assign(Matrix &out, int new_value) {
|
||||
shiterator::assign(out, new_value);
|
||||
}
|
||||
}
|
||||
|
|
530
shiterator.hpp
Normal file
530
shiterator.hpp
Normal file
|
@ -0,0 +1,530 @@
|
|||
#pragma once
|
||||
#include <vector>
|
||||
#include <queue>
|
||||
#include <string>
|
||||
#include <array>
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include <fmt/core.h>
|
||||
#include "point.hpp"
|
||||
#include "rand.hpp"
|
||||
#include "dbc.hpp"
|
||||
|
||||
/*
|
||||
* # What is This Shit?
|
||||
*
|
||||
* Announcing the Shape Iterators, or `shiterators` for short. You could also say these are Shaw's Iterators, but
|
||||
* either way they are the _shit_. Or are they shit? You decide. Maybe they're "shite"?
|
||||
*
|
||||
* A shiterator is a simple generator that converts 2D shapes into a 1D stream of x/y coordinates. You give it a matrix, some parameters like start, end, etc. and each time you call `next()` you the next viable x/y coordinate to complete the shape.
|
||||
*
|
||||
* A shiterator tries to ensure a few things:
|
||||
*
|
||||
* 1. All x/y values will be within the Matrix you give it.
|
||||
* 2. They try to not store anything and only calculate the math necessary to linearlize the shape.
|
||||
* 3. You can store them and incrementally call next to get the next value.
|
||||
* 4. You should be able to compose them together on the same Matrix or different matrices of the same dimensions.
|
||||
* 5. Most of them will only require 1 for-loop, the few that require 2 only do this so you can draw the inside of a shape. `circle` is like this.
|
||||
* 6. They don't assume any particular classes or require subclassing. As long as the type given enables `mat[y][x]` (row major) access then it'll work.
|
||||
* 7. The matrix given to a shiterator isn't actually attached to it, so you can use one matrix to setup an iterator, then apply the x/y values to any other matrix of the same dimensions.
|
||||
* 8. More importantly, shiterators _do not return any values from the matrix_. They only do the math for coordinates and leave it to you to work your matrix.
|
||||
*
|
||||
* These shiterators are used all over the game to do map rendering, randomization, drawing, nearly everything that involves a shape.
|
||||
*
|
||||
* ## Algorithms I Need
|
||||
*
|
||||
* I'm currently looking for a few algorithms, so if you know how to do these let me know:
|
||||
*
|
||||
* 1. _Flood fill_ This turns out to be really hard because most algorithms require keeping track of visited cells with a queue, recursion, etc.
|
||||
* 2. _Random rectangle fill_ I have something that mostly works but it's really only random across each y-axis, then separate y-axes are randomized.
|
||||
* 3. _Dijkstra Map_ I have a Dijkstra algorithm but it's not in this style yet. Look in `worldbuilder.cpp` for my current implementation.
|
||||
* 4. _Viewport_ Currently working on this but I need to have a rectangle I can move around as a viewport.
|
||||
*
|
||||
*
|
||||
* ## Usage
|
||||
*
|
||||
* Check the `matrix.hpp` for an example if you want to make it more conventient for your own type.
|
||||
*
|
||||
* ## Thanks
|
||||
*
|
||||
* Special thanks for Amit and hirdrac for their help with the math and for
|
||||
* giving me the initial idea. hirdrac doesn't want to be held responsible for
|
||||
* this travesty but he showed me that you can do iteration and _not_ use the
|
||||
* weird C++ iterators. Amit did a lot to show me how to do these calculations
|
||||
* without branching. Thanks to you both and everyone helping me while I
|
||||
* stream my development.
|
||||
*/
|
||||
namespace shiterator { using std::vector, std::queue, std::array; using
|
||||
std::min, std::max, std::floor;
|
||||
|
||||
template<typename T>
|
||||
using BaseRow = vector<T>;
|
||||
|
||||
template<typename T>
|
||||
using Base = vector<BaseRow<T>>;
|
||||
|
||||
template<typename T>
|
||||
inline Base<T> make(size_t width, size_t height) {
|
||||
Base<T> result(height, BaseRow<T>(width));
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* Just a quick thing to reset a matrix to a value.
|
||||
*/
|
||||
template<typename MAT, typename VAL>
|
||||
inline void assign(MAT &out, VAL new_value) {
|
||||
for(auto &row : out) {
|
||||
row.assign(row.size(), new_value);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Tells you if a coordinate is in bounds of the matrix
|
||||
* and therefore safe to use.
|
||||
*/
|
||||
template<typename MAT>
|
||||
inline bool inbounds(MAT &mat, size_t x, size_t y) {
|
||||
// since Point.x and Point.y are size_t any negatives are massive
|
||||
return (y < mat.size()) && (x < mat[0].size());
|
||||
}
|
||||
|
||||
/*
|
||||
* Gives the width of a matrix. Assumes row major (y/x)
|
||||
* and vector API .size().
|
||||
*/
|
||||
template<typename MAT>
|
||||
inline size_t width(MAT &mat) {
|
||||
return mat[0].size();
|
||||
}
|
||||
|
||||
/*
|
||||
* Same as shiterator::width but just the height.
|
||||
*/
|
||||
template<typename MAT>
|
||||
inline size_t height(MAT &mat) {
|
||||
return mat.size();
|
||||
}
|
||||
|
||||
/*
|
||||
* These are internal calculations that help
|
||||
* with keeping track of the next x coordinate.
|
||||
*/
|
||||
inline size_t next_x(size_t x, size_t width) {
|
||||
return (x + 1) * ((x + 1) < width);
|
||||
}
|
||||
|
||||
/*
|
||||
* Same as next_x but updates the next y coordinate.
|
||||
* It uses the fact that when x==0 you have a new
|
||||
* line so increment y.
|
||||
*/
|
||||
inline size_t next_y(size_t x, size_t y) {
|
||||
return y + (x == 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Figures out if you're at the end of the shape,
|
||||
* which is usually when y > height.
|
||||
*/
|
||||
inline bool at_end(size_t y, size_t height) {
|
||||
return y < height;
|
||||
}
|
||||
|
||||
/*
|
||||
* Determines if you're at the end of a row.
|
||||
*/
|
||||
inline bool end_row(size_t x, size_t width) {
|
||||
return x == width - 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Most basic shiterator. It just goes through
|
||||
* every cell in the matrix in linear order
|
||||
* with not tracking of anything else.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct each_cell_t {
|
||||
size_t x = ~0;
|
||||
size_t y = ~0;
|
||||
size_t width = 0;
|
||||
size_t height = 0;
|
||||
|
||||
each_cell_t(MAT &mat)
|
||||
{
|
||||
height = shiterator::height(mat);
|
||||
width = shiterator::width(mat);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
x = next_x(x, width);
|
||||
y = next_y(x, y);
|
||||
return at_end(y, height);
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* This is just each_cell_t but it sets
|
||||
* a boolean value `bool row` so you can
|
||||
* tell when you've reached the end of a
|
||||
* row. This is mostly used for printing
|
||||
* out a matrix and similar just drawing the
|
||||
* whole thing with its boundaries.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct each_row_t {
|
||||
size_t x = ~0;
|
||||
size_t y = ~0;
|
||||
size_t width = 0;
|
||||
size_t height = 0;
|
||||
bool row = false;
|
||||
|
||||
each_row_t(MAT &mat) {
|
||||
height = shiterator::height(mat);
|
||||
width = shiterator::width(mat);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
x = next_x(x, width);
|
||||
y = next_y(x, y);
|
||||
row = end_row(x, width);
|
||||
return at_end(y, height);
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* This is a CENTERED box, that will create
|
||||
* a centered rectangle around a point of a
|
||||
* certain dimension. This kind of needs a
|
||||
* rewrite but if you want a rectangle from
|
||||
* a upper corner then use rectangle_t type.
|
||||
*
|
||||
* Passing 1 parameter for the size will make
|
||||
* a square.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct box_t {
|
||||
size_t from_x;
|
||||
size_t from_y;
|
||||
size_t x = 0; // these are set in constructor
|
||||
size_t y = 0; // again, no fancy ~ trick needed
|
||||
size_t left = 0;
|
||||
size_t top = 0;
|
||||
size_t right = 0;
|
||||
size_t bottom = 0;
|
||||
|
||||
box_t(MAT &mat, size_t at_x, size_t at_y, size_t size) :
|
||||
box_t(mat, at_x, at_y, size, size) {
|
||||
}
|
||||
|
||||
box_t(MAT &mat, size_t at_x, size_t at_y, size_t width, size_t height) :
|
||||
from_x(at_x), from_y(at_y)
|
||||
{
|
||||
size_t h = shiterator::height(mat);
|
||||
size_t w = shiterator::width(mat);
|
||||
|
||||
// keeps it from going below zero
|
||||
// need extra -1 to compensate for the first next()
|
||||
left = max(from_x, width) - width;
|
||||
x = left - 1; // must be -1 for next()
|
||||
// keeps it from going above width
|
||||
right = min(from_x + width + 1, w);
|
||||
|
||||
// same for these two
|
||||
top = max(from_y, height) - height;
|
||||
y = top - (left == 0);
|
||||
bottom = min(from_y + height + 1, h);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
// calc next but allow to go to 0 for next
|
||||
x = next_x(x, right);
|
||||
// x will go to 0, which signals new line
|
||||
y = next_y(x, y); // this must go here
|
||||
// if x==0 then this moves it to min_x
|
||||
x = max(x, left);
|
||||
// and done
|
||||
|
||||
return at_end(y, bottom);
|
||||
}
|
||||
|
||||
/*
|
||||
* This was useful for doing quick lighting
|
||||
* calculations, and I might need to implement
|
||||
* it in other shiterators. It gives the distance
|
||||
* to the center from the current x/y.
|
||||
*/
|
||||
float distance() {
|
||||
int dx = from_x - x;
|
||||
int dy = from_y - y;
|
||||
|
||||
return sqrt((dx * dx) + (dy * dy));
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* Stupid simple compass shape North/South/East/West.
|
||||
* This comes up a _ton_ when doing searching, flood
|
||||
* algorithms, collision, etc. Probably not the
|
||||
* fastest way to do it but good enough.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct compass_t {
|
||||
size_t x = 0; // these are set in constructor
|
||||
size_t y = 0; // again, no fancy ~ trick needed
|
||||
array<int, 4> x_dirs{0, 1, 0, -1};
|
||||
array<int, 4> y_dirs{-1, 0, 1, 0};
|
||||
size_t max_dirs=0;
|
||||
size_t dir = ~0;
|
||||
|
||||
compass_t(MAT &mat, size_t x, size_t y) :
|
||||
x(x), y(y)
|
||||
{
|
||||
array<int, 4> x_in{0, 1, 0, -1};
|
||||
array<int, 4> y_in{-1, 0, 1, 0};
|
||||
|
||||
for(size_t i = 0; i < 4; i++) {
|
||||
int nx = x + x_in[i];
|
||||
int ny = y + y_in[i];
|
||||
if(shiterator::inbounds(mat, nx, ny)) {
|
||||
x_dirs[max_dirs] = nx;
|
||||
y_dirs[max_dirs] = ny;
|
||||
max_dirs++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool next() {
|
||||
dir++;
|
||||
if(dir < max_dirs) {
|
||||
x = x_dirs[dir];
|
||||
y = y_dirs[dir];
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* Draws a line from start to end using a algorithm from
|
||||
* https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm
|
||||
* No idea if the one I picked is best but it's the one
|
||||
* that works in the shiterator requirements and produced
|
||||
* good results.
|
||||
*
|
||||
* _WARNING_: This one doesn't check if the start/end are
|
||||
* within your Matrix, as it's assumed _you_ did that
|
||||
* already.
|
||||
*/
|
||||
struct line {
|
||||
int x;
|
||||
int y;
|
||||
int x1;
|
||||
int y1;
|
||||
int sx;
|
||||
int sy;
|
||||
int dx;
|
||||
int dy;
|
||||
int error;
|
||||
|
||||
line(Point start, Point end) :
|
||||
x(start.x), y(start.y),
|
||||
x1(end.x), y1(end.y)
|
||||
{
|
||||
dx = std::abs(x1 - x);
|
||||
sx = x < x1 ? 1 : -1;
|
||||
dy = std::abs(y1 - y) * -1;
|
||||
sy = y < y1 ? 1 : -1;
|
||||
error = dx + dy;
|
||||
}
|
||||
|
||||
bool next() {
|
||||
if(x != x1 || y != y1) {
|
||||
int e2 = 2 * error;
|
||||
|
||||
if(e2 >= dy) {
|
||||
error = error + dy;
|
||||
x = x + sx;
|
||||
}
|
||||
|
||||
if(e2 <= dx) {
|
||||
error = error + dx;
|
||||
y = y + sy;
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* Draws a simple circle using a fairly naive algorithm
|
||||
* but one that actually worked. So, so, so, so many
|
||||
* circle drawing algorithms described online don't work
|
||||
* or are flat wrong. Even the very best I could find
|
||||
* did overdrawing of multiple lines or simply got the
|
||||
* math wrong. Keep in mind, _I_ am bad at this trig math
|
||||
* so if I'm finding errors in your circle drawing then
|
||||
* you got problems.
|
||||
*
|
||||
* This one is real simple, and works. If you got better
|
||||
* then take the challenge but be ready to get it wrong.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct circle_t {
|
||||
float center_x;
|
||||
float center_y;
|
||||
float radius = 0.0f;
|
||||
int y = 0;
|
||||
int dx = 0;
|
||||
int dy = 0;
|
||||
int left = 0;
|
||||
int right = 0;
|
||||
int top = 0;
|
||||
int bottom = 0;
|
||||
int width = 0;
|
||||
int height = 0;
|
||||
|
||||
circle_t(MAT &mat, Point center, float radius) :
|
||||
center_x(center.x), center_y(center.y), radius(radius)
|
||||
{
|
||||
width = shiterator::width(mat);
|
||||
height = shiterator::height(mat);
|
||||
top = max(int(floor(center_y - radius)), 0);
|
||||
bottom = min(int(floor(center_y + radius)), height - 1);
|
||||
|
||||
y = top;
|
||||
}
|
||||
|
||||
bool next() {
|
||||
y++;
|
||||
if(y <= bottom) {
|
||||
dy = y - center_y;
|
||||
dx = floor(sqrt(radius * radius - dy * dy));
|
||||
left = max(0, int(center_x) - dx);
|
||||
right = min(width, int(center_x) + dx + 1);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* Basic rectangle shiterator, and like box and rando_rect_t you can
|
||||
* pass only 1 parameter for size to do a square.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct rectangle_t {
|
||||
int x;
|
||||
int y;
|
||||
int top;
|
||||
int left;
|
||||
int width;
|
||||
int height;
|
||||
int right;
|
||||
int bottom;
|
||||
|
||||
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t size) :
|
||||
rectangle_t(mat, start_x, start_y, size, size) {
|
||||
}
|
||||
|
||||
rectangle_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
|
||||
top(start_y),
|
||||
left(start_x),
|
||||
width(width),
|
||||
height(height)
|
||||
{
|
||||
size_t h = shiterator::height(mat);
|
||||
size_t w = shiterator::width(mat);
|
||||
y = start_y - 1;
|
||||
x = left - 1; // must be -1 for next()
|
||||
right = min(start_x + width, w);
|
||||
|
||||
y = start_y;
|
||||
bottom = min(start_y + height, h);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
x = next_x(x, right);
|
||||
y = next_y(x, y);
|
||||
x = max(x, left);
|
||||
return at_end(y, bottom);
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* WIP: This one is used to place entities randomly but
|
||||
* could be used for effects like random destruction of floors.
|
||||
* It simply "wraps" the rectangle_t but randomizes the x/y values
|
||||
* using a random starting point. This makes it random across the
|
||||
* x-axis but only partially random across the y.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct rando_rect_t {
|
||||
int x;
|
||||
int y;
|
||||
int x_offset;
|
||||
int y_offset;
|
||||
rectangle_t<MAT> it;
|
||||
|
||||
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t size) :
|
||||
rando_rect_t(mat, start_x, start_y, size, size) {
|
||||
}
|
||||
|
||||
rando_rect_t(MAT &mat, size_t start_x, size_t start_y, size_t width, size_t height) :
|
||||
it{mat, start_x, start_y, width, height}
|
||||
{
|
||||
x_offset = Random::uniform(0, int(width));
|
||||
y_offset = Random::uniform(0, int(height));
|
||||
}
|
||||
|
||||
bool next() {
|
||||
bool done = it.next();
|
||||
x = it.left + ((it.x + x_offset) % it.width);
|
||||
y = it.top + ((it.y + y_offset) % it.height);
|
||||
return done;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* BROKEN: I'm actually not sure what I'm trying to
|
||||
* do here yet.
|
||||
*/
|
||||
template<typename MAT>
|
||||
struct viewport_t {
|
||||
Point start;
|
||||
// this is the point in the map
|
||||
size_t x;
|
||||
size_t y;
|
||||
// this is the point inside the box, start at 0
|
||||
size_t view_x = ~0;
|
||||
size_t view_y = ~0;
|
||||
// viewport width/height
|
||||
size_t width;
|
||||
size_t height;
|
||||
|
||||
viewport_t(MAT &mat, Point start, int max_x, int max_y) :
|
||||
start(start),
|
||||
x(start.x-1),
|
||||
y(start.y-1)
|
||||
{
|
||||
width = std::min(size_t(max_x), shiterator::width(mat) - start.x);
|
||||
height = std::min(size_t(max_y), shiterator::height(mat) - start.y);
|
||||
fmt::println("viewport_t max_x, max_y {},{} vs matrix {},{}, x={}, y={}",
|
||||
max_x, max_y, shiterator::width(mat), shiterator::height(mat), x, y);
|
||||
}
|
||||
|
||||
bool next() {
|
||||
y = next_y(x, y);
|
||||
x = next_x(x, width);
|
||||
view_x = next_x(view_x, width);
|
||||
view_y = next_y(view_x, view_y);
|
||||
return at_end(y, height);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
|
@ -183,34 +183,6 @@ TEST_CASE("thrash compass iterators", "[matrix:compass]") {
|
|||
}
|
||||
}
|
||||
|
||||
TEST_CASE("prototype flood algorithm", "[matrix:flood]") {
|
||||
for(int count = 0; count < 20; count++) {
|
||||
size_t width = Random::uniform<size_t>(10, 25);
|
||||
size_t height = Random::uniform<size_t>(10, 33);
|
||||
|
||||
Map map(width,height);
|
||||
WorldBuilder builder(map);
|
||||
builder.generate_map();
|
||||
|
||||
if(map.room_count() < 2) continue;
|
||||
|
||||
Point start;
|
||||
REQUIRE(map.place_entity(map.room_count() / 2, start));
|
||||
map.set_target(start);
|
||||
map.make_paths();
|
||||
Matrix result = map.paths();
|
||||
|
||||
// matrix::dump("WALLS BEFORE FLOOD", result, start.x, start.y);
|
||||
|
||||
for(matrix::flood it{result, start, 3, 15}; it.next();) {
|
||||
REQUIRE(matrix::inbounds(result, it.x, it.y));
|
||||
result[it.y][it.x] = 15;
|
||||
}
|
||||
|
||||
// matrix::dump("WALLS AFTER FLOOD", result, start.x, start.y);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("prototype line algorithm", "[matrix:line]") {
|
||||
size_t width = Random::uniform<size_t>(10, 12);
|
||||
size_t height = Random::uniform<size_t>(10, 15);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue