#include "constants.hpp" #include "pathing.hpp" #include "dbc.hpp" #include using std::vector; inline void add_neighbors(PointList &neighbors, Matrix &closed, size_t y, size_t x) { for(matrix::box it{closed, x, y, 1}; it.next();) { if(closed[it.y][it.x] == 0) { closed[it.y][it.x] = 1; neighbors.emplace_back(it.x, it.y); } } } /* * Used https://github.com/HenrYxZ/dijkstra-map as a reference. */ void Pathing::compute_paths(Matrix &walls) { INVARIANT(); dbc::check(walls[0].size() == $width, fmt::format("Pathing::compute_paths called with walls.width={} but paths $width={}", walls[0].size(), $width)); dbc::check(walls.size() == $height, fmt::format("Pathing::compute_paths called with walls.height={} but paths $height={}", walls[0].size(), $height)); // Initialize the new array with every pixel at limit distance matrix::assign($paths, WALL_PATH_LIMIT); Matrix closed = walls; PointList starting_pixels; PointList open_pixels; // First pass: Add starting pixels and put them in closed for(size_t counter = 0; counter < $height * $width; counter++) { size_t x = counter % $width; size_t y = counter / $width; if($input[y][x] == 0) { $paths[y][x] = 0; closed[y][x] = 1; starting_pixels.emplace_back(x,y); } } // Second pass: Add border to open for(auto sp : starting_pixels) { add_neighbors(open_pixels, closed, sp.y, sp.x); } // Third pass: Iterate filling in the open list int counter = 1; // leave this here so it's available below for(; counter < WALL_PATH_LIMIT && !open_pixels.empty(); ++counter) { PointList next_open; for(auto sp : open_pixels) { $paths[sp.y][sp.x] = counter; add_neighbors(next_open, closed, sp.y, sp.x); } open_pixels = next_open; } // Last pass: flood last pixels for(auto sp : open_pixels) { $paths[sp.y][sp.x] = counter; } } void Pathing::set_target(const Point &at, int value) { // FUTURE: I'll eventually allow setting this to negatives for priority $input[at.y][at.x] = value; } void Pathing::clear_target(const Point &at) { $input[at.y][at.x] = 1; } PathingResult Pathing::find_path(Point &out, int direction, bool diag) { // get the current dijkstra number int cur = $paths[out.y][out.x]; int target = cur; bool found = false; // a lambda makes it easy to capture what we have to change auto next_step = [&](size_t x, size_t y) -> bool { target = $paths[y][x]; // don't go through walls if(target == WALL_PATH_LIMIT) return false; int weight = cur - target; if(weight == direction) { out = {x, y}; found = true; // only break if this is a lower path return true; } else if(weight == 0) { out = {x, y}; found = true; // only found an equal path, keep checking } // this says keep going return false; }; if(diag) { for(matrix::box it{$paths, out.x, out.y, 1}; it.next();) { bool should_stop = next_step(it.x, it.y); if(should_stop) break; } } else { for(matrix::compass it{$paths, out.x, out.y}; it.next();) { bool should_stop = next_step(it.x, it.y); if(should_stop) break; } } if(target == 0) { return PathingResult::FOUND; } else if(!found) { return PathingResult::FAIL; } else { return PathingResult::CONTINUE; } } bool Pathing::INVARIANT() { using dbc::check; check($paths.size() == $height, "paths wrong height"); check($paths[0].size() == $width, "paths wrong width"); check($input.size() == $height, "input wrong height"); check($input[0].size() == $width, "input wrong width"); return true; }