A bit more cleanup to avoid duplicate testing and to separate the GOAP algorithm code from the little AI Manager thing.
This commit is contained in:
parent
b2c1b220ac
commit
3f83d3f0bb
8 changed files with 296 additions and 290 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -27,3 +27,4 @@ backup
|
|||
*.dll
|
||||
*.world
|
||||
coverage
|
||||
.venv
|
||||
|
|
124
ai.cpp
124
ai.cpp
|
@ -5,126 +5,6 @@ namespace ai {
|
|||
using namespace nlohmann;
|
||||
using namespace dbc;
|
||||
|
||||
bool is_subset(State& source, State& target) {
|
||||
State result = source & target;
|
||||
return result == target;
|
||||
}
|
||||
|
||||
void Action::needs(int name, bool val) {
|
||||
if(val) {
|
||||
$positive_preconds[name] = true;
|
||||
$negative_preconds[name] = false;
|
||||
} else {
|
||||
$negative_preconds[name] = true;
|
||||
$positive_preconds[name] = false;
|
||||
}
|
||||
}
|
||||
|
||||
void Action::effect(int name, bool val) {
|
||||
if(val) {
|
||||
$positive_effects[name] = true;
|
||||
$negative_effects[name] = false;
|
||||
} else {
|
||||
$negative_effects[name] = true;
|
||||
$positive_effects[name] = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool Action::can_effect(State& state) {
|
||||
return ((state & $positive_preconds) == $positive_preconds) &&
|
||||
((state & $negative_preconds) == ALL_ZERO);
|
||||
}
|
||||
|
||||
State Action::apply_effect(State& state) {
|
||||
return (state | $positive_effects) & ~$negative_effects;
|
||||
}
|
||||
|
||||
int distance_to_goal(State& from, State& to) {
|
||||
auto result = from ^ to;
|
||||
return result.count();
|
||||
}
|
||||
|
||||
Script reconstruct_path(std::unordered_map<Action, Action>& came_from, Action& current) {
|
||||
Script total_path{current};
|
||||
int count = 0;
|
||||
|
||||
while(came_from.contains(current) && count++ < 10) {
|
||||
current = came_from.at(current);
|
||||
if(current != FINAL_ACTION) {
|
||||
total_path.push_front(current);
|
||||
}
|
||||
}
|
||||
|
||||
return total_path;
|
||||
}
|
||||
|
||||
inline int h(State& start, State& goal) {
|
||||
return distance_to_goal(start, goal);
|
||||
}
|
||||
|
||||
inline int d(State& start, State& goal) {
|
||||
return distance_to_goal(start, goal);
|
||||
}
|
||||
|
||||
ActionState find_lowest(std::unordered_map<ActionState, int>& open_set) {
|
||||
check(!open_set.empty(), "open set can't be empty in find_lowest");
|
||||
const ActionState *result = nullptr;
|
||||
int lowest_score = SCORE_MAX;
|
||||
|
||||
for(auto& kv : open_set) {
|
||||
if(kv.second < lowest_score) {
|
||||
lowest_score = kv.second;
|
||||
result = &kv.first;
|
||||
}
|
||||
}
|
||||
|
||||
return *result;
|
||||
}
|
||||
|
||||
std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal) {
|
||||
std::unordered_map<ActionState, int> open_set;
|
||||
std::unordered_map<Action, Action> came_from;
|
||||
std::unordered_map<State, int> g_score;
|
||||
|
||||
ActionState start_state{FINAL_ACTION, start};
|
||||
|
||||
g_score[start] = 0;
|
||||
open_set[start_state] = g_score[start] + h(start, goal);
|
||||
|
||||
while(!open_set.empty()) {
|
||||
auto current = find_lowest(open_set);
|
||||
|
||||
if(is_subset(current.state, goal)) {
|
||||
return std::make_optional<Script>(reconstruct_path(came_from, current.action));
|
||||
}
|
||||
|
||||
open_set.erase(current);
|
||||
|
||||
for(auto& neighbor_action : actions) {
|
||||
// calculate the State being current/neighbor
|
||||
if(!neighbor_action.can_effect(current.state)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto neighbor = neighbor_action.apply_effect(current.state);
|
||||
int d_score = d(current.state, neighbor);
|
||||
int tentative_g_score = g_score[current.state] + d_score;
|
||||
int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX;
|
||||
if(tentative_g_score < neighbor_g_score) {
|
||||
came_from.insert_or_assign(neighbor_action, current.action);
|
||||
|
||||
g_score[neighbor] = tentative_g_score;
|
||||
// open_set gets the fScore
|
||||
ActionState neighbor_as{neighbor_action, neighbor};
|
||||
open_set[neighbor_as] = tentative_g_score + h(neighbor, goal);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
static AIManager AIMGR;
|
||||
static bool initialized = false;
|
||||
|
||||
|
@ -180,9 +60,9 @@ namespace ai {
|
|||
return result;
|
||||
}
|
||||
|
||||
void init() {
|
||||
void init(std::string config_path) {
|
||||
initialized = true;
|
||||
Config config("assets/ai.json");
|
||||
Config config(config_path);
|
||||
|
||||
// profile specifies what keys (bitset indexes) are allowed
|
||||
// and how they map to the bitset of State
|
||||
|
|
69
ai.hpp
69
ai.hpp
|
@ -6,62 +6,9 @@
|
|||
#include <optional>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "config.hpp"
|
||||
#include "goap.hpp"
|
||||
|
||||
namespace ai {
|
||||
constexpr const int SCORE_MAX = std::numeric_limits<int>::max();
|
||||
constexpr const size_t STATE_MAX = 32;
|
||||
|
||||
using State = std::bitset<STATE_MAX>;
|
||||
|
||||
const State ALL_ZERO;
|
||||
const State ALL_ONES = ~ALL_ZERO;
|
||||
|
||||
struct Action {
|
||||
std::string $name;
|
||||
int $cost = 0;
|
||||
|
||||
State $positive_preconds;
|
||||
State $negative_preconds;
|
||||
|
||||
State $positive_effects;
|
||||
State $negative_effects;
|
||||
|
||||
Action(std::string name, int cost) :
|
||||
$name(name), $cost(cost) { }
|
||||
|
||||
void needs(int name, bool val);
|
||||
void effect(int name, bool val);
|
||||
|
||||
bool can_effect(State& state);
|
||||
State apply_effect(State& state);
|
||||
|
||||
bool operator==(const Action& other) const {
|
||||
return other.$name == $name;
|
||||
}
|
||||
};
|
||||
|
||||
using Script = std::deque<Action>;
|
||||
|
||||
const Action FINAL_ACTION("END", SCORE_MAX);
|
||||
|
||||
struct ActionState {
|
||||
Action action;
|
||||
State state;
|
||||
|
||||
ActionState(Action action, State state) :
|
||||
action(action), state(state) {}
|
||||
|
||||
bool operator==(const ActionState& other) const {
|
||||
return other.action == action && other.state == state;
|
||||
}
|
||||
};
|
||||
|
||||
bool is_subset(State& source, State& target);
|
||||
|
||||
int distance_to_goal(State& from, State& to);
|
||||
|
||||
std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal);
|
||||
|
||||
struct AIManager {
|
||||
nlohmann::json profile;
|
||||
|
||||
|
@ -70,7 +17,7 @@ namespace ai {
|
|||
std::unordered_map<std::string, std::vector<Action>> scripts;
|
||||
};
|
||||
|
||||
void init();
|
||||
void init(std::string config_path);
|
||||
|
||||
Action config_action(nlohmann::json& profile, nlohmann::json& config);
|
||||
State config_state(nlohmann::json& profile, nlohmann::json& config);
|
||||
|
@ -82,15 +29,3 @@ namespace ai {
|
|||
|
||||
std::optional<Script> plan(std::string script_name, State start, State goal);
|
||||
}
|
||||
|
||||
template<> struct std::hash<ai::Action> {
|
||||
size_t operator()(const ai::Action& p) const {
|
||||
return std::hash<std::string>{}(p.$name);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct std::hash<ai::ActionState> {
|
||||
size_t operator()(const ai::ActionState& p) const {
|
||||
return std::hash<ai::Action>{}(p.action) ^ std::hash<ai::State>{}(p.state);
|
||||
}
|
||||
};
|
||||
|
|
127
goap.cpp
Normal file
127
goap.cpp
Normal file
|
@ -0,0 +1,127 @@
|
|||
#include "dbc.hpp"
|
||||
#include "goap.hpp"
|
||||
|
||||
namespace ai {
|
||||
using namespace nlohmann;
|
||||
using namespace dbc;
|
||||
|
||||
bool is_subset(State& source, State& target) {
|
||||
State result = source & target;
|
||||
return result == target;
|
||||
}
|
||||
|
||||
void Action::needs(int name, bool val) {
|
||||
if(val) {
|
||||
$positive_preconds[name] = true;
|
||||
$negative_preconds[name] = false;
|
||||
} else {
|
||||
$negative_preconds[name] = true;
|
||||
$positive_preconds[name] = false;
|
||||
}
|
||||
}
|
||||
|
||||
void Action::effect(int name, bool val) {
|
||||
if(val) {
|
||||
$positive_effects[name] = true;
|
||||
$negative_effects[name] = false;
|
||||
} else {
|
||||
$negative_effects[name] = true;
|
||||
$positive_effects[name] = false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool Action::can_effect(State& state) {
|
||||
return ((state & $positive_preconds) == $positive_preconds) &&
|
||||
((state & $negative_preconds) == ALL_ZERO);
|
||||
}
|
||||
|
||||
State Action::apply_effect(State& state) {
|
||||
return (state | $positive_effects) & ~$negative_effects;
|
||||
}
|
||||
|
||||
int distance_to_goal(State& from, State& to) {
|
||||
auto result = from ^ to;
|
||||
return result.count();
|
||||
}
|
||||
|
||||
Script reconstruct_path(std::unordered_map<Action, Action>& came_from, Action& current) {
|
||||
Script total_path{current};
|
||||
int count = 0;
|
||||
|
||||
while(came_from.contains(current) && count++ < 10) {
|
||||
current = came_from.at(current);
|
||||
if(current != FINAL_ACTION) {
|
||||
total_path.push_front(current);
|
||||
}
|
||||
}
|
||||
|
||||
return total_path;
|
||||
}
|
||||
|
||||
inline int h(State& start, State& goal) {
|
||||
return distance_to_goal(start, goal);
|
||||
}
|
||||
|
||||
inline int d(State& start, State& goal) {
|
||||
return distance_to_goal(start, goal);
|
||||
}
|
||||
|
||||
ActionState find_lowest(std::unordered_map<ActionState, int>& open_set) {
|
||||
check(!open_set.empty(), "open set can't be empty in find_lowest");
|
||||
const ActionState *result = nullptr;
|
||||
int lowest_score = SCORE_MAX;
|
||||
|
||||
for(auto& kv : open_set) {
|
||||
if(kv.second < lowest_score) {
|
||||
lowest_score = kv.second;
|
||||
result = &kv.first;
|
||||
}
|
||||
}
|
||||
|
||||
return *result;
|
||||
}
|
||||
|
||||
std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal) {
|
||||
std::unordered_map<ActionState, int> open_set;
|
||||
std::unordered_map<Action, Action> came_from;
|
||||
std::unordered_map<State, int> g_score;
|
||||
|
||||
ActionState start_state{FINAL_ACTION, start};
|
||||
|
||||
g_score[start] = 0;
|
||||
open_set[start_state] = g_score[start] + h(start, goal);
|
||||
|
||||
while(!open_set.empty()) {
|
||||
auto current = find_lowest(open_set);
|
||||
|
||||
if(is_subset(current.state, goal)) {
|
||||
return std::make_optional<Script>(reconstruct_path(came_from, current.action));
|
||||
}
|
||||
|
||||
open_set.erase(current);
|
||||
|
||||
for(auto& neighbor_action : actions) {
|
||||
// calculate the State being current/neighbor
|
||||
if(!neighbor_action.can_effect(current.state)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto neighbor = neighbor_action.apply_effect(current.state);
|
||||
int d_score = d(current.state, neighbor);
|
||||
int tentative_g_score = g_score[current.state] + d_score;
|
||||
int neighbor_g_score = g_score.contains(neighbor) ? g_score[neighbor] : SCORE_MAX;
|
||||
if(tentative_g_score < neighbor_g_score) {
|
||||
came_from.insert_or_assign(neighbor_action, current.action);
|
||||
|
||||
g_score[neighbor] = tentative_g_score;
|
||||
// open_set gets the fScore
|
||||
ActionState neighbor_as{neighbor_action, neighbor};
|
||||
open_set[neighbor_as] = tentative_g_score + h(neighbor, goal);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
76
goap.hpp
Normal file
76
goap.hpp
Normal file
|
@ -0,0 +1,76 @@
|
|||
#pragma once
|
||||
#include <vector>
|
||||
#include "matrix.hpp"
|
||||
#include <bitset>
|
||||
#include <limits>
|
||||
#include <optional>
|
||||
#include <nlohmann/json.hpp>
|
||||
#include "config.hpp"
|
||||
|
||||
namespace ai {
|
||||
constexpr const int SCORE_MAX = std::numeric_limits<int>::max();
|
||||
constexpr const size_t STATE_MAX = 32;
|
||||
|
||||
using State = std::bitset<STATE_MAX>;
|
||||
|
||||
const State ALL_ZERO;
|
||||
const State ALL_ONES = ~ALL_ZERO;
|
||||
|
||||
struct Action {
|
||||
std::string $name;
|
||||
int $cost = 0;
|
||||
|
||||
State $positive_preconds;
|
||||
State $negative_preconds;
|
||||
|
||||
State $positive_effects;
|
||||
State $negative_effects;
|
||||
|
||||
Action(std::string name, int cost) :
|
||||
$name(name), $cost(cost) { }
|
||||
|
||||
void needs(int name, bool val);
|
||||
void effect(int name, bool val);
|
||||
|
||||
bool can_effect(State& state);
|
||||
State apply_effect(State& state);
|
||||
|
||||
bool operator==(const Action& other) const {
|
||||
return other.$name == $name;
|
||||
}
|
||||
};
|
||||
|
||||
using Script = std::deque<Action>;
|
||||
|
||||
const Action FINAL_ACTION("END", SCORE_MAX);
|
||||
|
||||
struct ActionState {
|
||||
Action action;
|
||||
State state;
|
||||
|
||||
ActionState(Action action, State state) :
|
||||
action(action), state(state) {}
|
||||
|
||||
bool operator==(const ActionState& other) const {
|
||||
return other.action == action && other.state == state;
|
||||
}
|
||||
};
|
||||
|
||||
bool is_subset(State& source, State& target);
|
||||
|
||||
int distance_to_goal(State& from, State& to);
|
||||
|
||||
std::optional<Script> plan_actions(std::vector<Action>& actions, State& start, State& goal);
|
||||
}
|
||||
|
||||
template<> struct std::hash<ai::Action> {
|
||||
size_t operator()(const ai::Action& p) const {
|
||||
return std::hash<std::string>{}(p.$name);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct std::hash<ai::ActionState> {
|
||||
size_t operator()(const ai::ActionState& p) const {
|
||||
return std::hash<ai::Action>{}(p.action) ^ std::hash<ai::State>{}(p.state);
|
||||
}
|
||||
};
|
|
@ -80,9 +80,8 @@ dependencies += [
|
|||
sfml_window, ftxui_screen, ftxui_dom, ftxui_component
|
||||
]
|
||||
|
||||
|
||||
|
||||
sources = [
|
||||
'ai.cpp',
|
||||
'ansi_parser.cpp',
|
||||
'autowalker.cpp',
|
||||
'boss_fight_ui.cpp',
|
||||
|
@ -93,7 +92,7 @@ sources = [
|
|||
'config.cpp',
|
||||
'dbc.cpp',
|
||||
'devices.cpp',
|
||||
'ai.cpp',
|
||||
'goap.cpp',
|
||||
'guecs.cpp',
|
||||
'gui_fsm.cpp',
|
||||
'inventory.cpp',
|
||||
|
|
99
tests/ai.cpp
99
tests/ai.cpp
|
@ -103,105 +103,9 @@ TEST_CASE("basic feature tests", "[ai]") {
|
|||
REQUIRE(state[ENEMY_DEAD]);
|
||||
}
|
||||
|
||||
TEST_CASE("wargame test from cppAI", "[ai]") {
|
||||
std::vector<ai::Action> actions;
|
||||
auto profile = R"({
|
||||
"target_acquired": 0,
|
||||
"target_lost": 1,
|
||||
"target_in_warhead_range": 2,
|
||||
"target_dead": 3
|
||||
})"_json;
|
||||
|
||||
// Now establish all the possible actions for the action pool
|
||||
// In this example we're providing the AI some different FPS actions
|
||||
auto config = R"({
|
||||
"name": "searchSpiral",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_acquired": false,
|
||||
"target_lost": true
|
||||
},
|
||||
"effects": {
|
||||
"target_acquired": true
|
||||
}
|
||||
})"_json;
|
||||
auto spiral = ai::config_action(profile, config);
|
||||
actions.push_back(spiral);
|
||||
|
||||
config = R"({
|
||||
"name": "searchSerpentine",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_acquired": false,
|
||||
"target_lost": false
|
||||
},
|
||||
"effects": {
|
||||
"target_acquired": true
|
||||
}
|
||||
})"_json;
|
||||
auto serpentine = ai::config_action(profile, config);
|
||||
actions.push_back(serpentine);
|
||||
|
||||
config = R"({
|
||||
"name": "interceptTarget",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_acquired": true,
|
||||
"target_dead": false
|
||||
},
|
||||
"effects": {
|
||||
"target_in_warhead_range": true
|
||||
}
|
||||
})"_json;
|
||||
auto intercept = ai::config_action(profile, config);
|
||||
actions.push_back(intercept);
|
||||
|
||||
config = R"({
|
||||
"name": "detonateNearTarget",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_in_warhead_range": true,
|
||||
"target_acquired": true,
|
||||
"target_dead": false
|
||||
},
|
||||
"effects": {
|
||||
"target_dead": true
|
||||
}
|
||||
})"_json;
|
||||
|
||||
auto detonateNearTarget = ai::config_action(profile, config);
|
||||
actions.push_back(detonateNearTarget);
|
||||
|
||||
// Here's the initial state...
|
||||
config = R"({
|
||||
"target_acquired": false,
|
||||
"target_lost": true,
|
||||
"target_in_warhead_range": false,
|
||||
"target_dead": false
|
||||
})"_json;
|
||||
auto initial_state = ai::config_state(profile, config);
|
||||
|
||||
// ...and the goal state
|
||||
config = R"({
|
||||
"target_dead": true
|
||||
})"_json;
|
||||
auto goal_target_dead = ai::config_state(profile, config);
|
||||
|
||||
auto result = ai::plan_actions(actions, initial_state, goal_target_dead);
|
||||
REQUIRE(result != std::nullopt);
|
||||
|
||||
auto state = initial_state;
|
||||
|
||||
for(auto& action : *result) {
|
||||
fmt::println("ACTION: {}", action.$name);
|
||||
state = action.apply_effect(state);
|
||||
}
|
||||
|
||||
REQUIRE(state[profile["target_dead"]]);
|
||||
}
|
||||
|
||||
TEST_CASE("ai as a module like sound/sprites", "[ai]") {
|
||||
ai::init();
|
||||
ai::init("tests/ai_fixture.json");
|
||||
|
||||
auto start = ai::load_state("test_start");
|
||||
auto goal = ai::load_state("test_goal");
|
||||
|
@ -216,5 +120,4 @@ TEST_CASE("ai as a module like sound/sprites", "[ai]") {
|
|||
}
|
||||
|
||||
REQUIRE(state[ai::state_id("target_dead")]);
|
||||
|
||||
}
|
||||
|
|
85
tests/ai_fixture.json
Normal file
85
tests/ai_fixture.json
Normal file
|
@ -0,0 +1,85 @@
|
|||
{
|
||||
"profile": {
|
||||
"target_acquired": 0,
|
||||
"target_lost": 1,
|
||||
"target_in_warhead_range": 2,
|
||||
"target_dead": 3
|
||||
},
|
||||
"actions": [
|
||||
{
|
||||
"name": "searchSpiral",
|
||||
"cost": 10,
|
||||
"needs": {
|
||||
"target_acquired": false,
|
||||
"target_lost": true
|
||||
},
|
||||
"effects": {
|
||||
"target_acquired": true
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "searchSerpentine",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_acquired": false,
|
||||
"target_lost": false
|
||||
},
|
||||
"effects": {
|
||||
"target_acquired": true
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "searchSpiral",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_acquired": false,
|
||||
"target_lost": true
|
||||
},
|
||||
"effects": {
|
||||
"target_acquired": true
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "interceptTarget",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_acquired": true,
|
||||
"target_dead": false
|
||||
},
|
||||
"effects": {
|
||||
"target_in_warhead_range": true
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "detonateNearTarget",
|
||||
"cost": 5,
|
||||
"needs": {
|
||||
"target_in_warhead_range": true,
|
||||
"target_acquired": true,
|
||||
"target_dead": false
|
||||
},
|
||||
"effects": {
|
||||
"target_dead": true
|
||||
}
|
||||
}
|
||||
],
|
||||
"states": {
|
||||
"test_start": {
|
||||
"target_acquired": false,
|
||||
"target_lost": true,
|
||||
"target_in_warhead_range": false,
|
||||
"target_dead": false
|
||||
},
|
||||
"test_goal": {
|
||||
"target_dead": true
|
||||
}
|
||||
},
|
||||
"scripts": {
|
||||
"test1": [
|
||||
"searchSpiral",
|
||||
"searchSerpentine",
|
||||
"searchSpiral",
|
||||
"interceptTarget",
|
||||
"detonateNearTarget"]
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue